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The reconstruction and timing of the early stages of social evolution,
such as parental care, in the fossil record is a challenge, as these
behaviors often do not leave concrete traces. One of the intensely
investigated examples of modern parental care are the modern
burying beetles (Silphidae: Nicrophorus), a lineage that includes no-
table endangered species. Here we report diverse transitional
silphids from the Mesozoic of China and Myanmar that provide
insights into the origins of parental care. Jurassic silphids from
Daohugou, sharing many defining characters of Nicrophorinae,
primitively lack stridulatory files significant for parental care com-
munications; although morphologically similar, Early Cretaceous
nicrophorines from the Jehol biota possess such files, indicating that
a system of parental care had evolved by this early date. More
importantly, burying beetles of the genus Nicrophorus have their
earliest first record in mid-Cretaceous Burmese amber, and docu-
ment early evolution of elaborate biparental care and defense of
small vertebrate carcasses for their larvae. Parental care in the Early
Cretaceous may have originated from competition between silphids
and their predators. The rise of the Cretaceous Nicrophorinae
implies a biology similar to modern counterparts that typically feed
on carcasses of small birds and mammals.

sociobiology | paleoethology | paleoecology

Understanding the early evolution of many complex or
ephemeral behaviors is severely hampered by the frequent

lack of fossilized traces. Among these behaviors, parental care
represents a significant behavioral adaptation in life history traits
and, as one of the core levels of arthropod sociality, has a wealth
of sociobiological and behavioral ecological theory behind it (1).
Parental care has evolved independently numerous times among
animals, including various lineages of insects (1, 2), for which one
of the notable examples is the famous burying beetle, otherwise so
critical to forensic entomology. With fewer than 200 extant spe-
cies, the family Silphidae are among the largest and most con-
spicuous of the staphylinoid Coleoptera (3) and comprise two well-
defined subfamilies: the Silphinae and the Nicrophorinae, with the
latter characterized by the presence of an epistomal sulcus and
paired stridulatory files and the former by the absence of such
features. Silphid parental care has been intensively studied (4, 5),
with several attempts to explain its origin and subsequent evolution
(6, 7). Fossil evidence that elucidates the origin and evolutionary
history of this phenomenon is, not surprisingly, lacking, although
modern-looking silphids have been discovered in the Tertiary
(8–10). Recent discoveries in the Middle Jurassic and Early Cre-
taceous of northeastern China together provide a unique suite of
evidence for the timing of origin of parental care in these beetles,
and suggest an ancient and long history to this behavioral adap-
tation among silphids. Furthermore, evidence from olfactory struc-
tures preserved in minute detail on the antennae of these fossils
reveals them to have already adapted to feeding on carrion, perhaps
being important recyclers of small-bodied vertebrates during the
Age of Dinosaurs.

The material studied herein includes 44 well-preserved speci-
mens belonging to three distinct groups. The first group, charac-
terized by the absence of abdominal stridulatory files, comprises
37 specimens from the Middle Jurassic Daohugou beds (∼165 Mya)
at Daohugou, Ningcheng County, Inner Mongolia of China. The
second group, with distinct abdominal stridulatory files as in crown-
group nicrophorine silphids, includes five specimens from the
Lower Cretaceous Yixian Formation (∼125 Mya) at Huangbanjigou,
Beipiao City, Liaoning Province and Liutiaogou, Ningcheng
County, Inner Mongolia. The third group, with lamellate apical
antennomeres, comprises six individuals preserved in two mid-
Cretaceous ambers (∼99 Mya) from northern Myanmar.

Results
All Jurassic and Cretaceous beetles are unambiguously referred to
Silphidae, as evidenced by their general habitus, clubbed anten-
nae, large mesoscutellum, truncate elytra, and well-separated
mesocoxae (3, 11). The diverse transitional silphids extend the
earliest records of the family by about 130 million y, the next
oldest record being a compression fossil from the Late Eocene
(∼35 Mya) of Florissant, Colorado (9). With a body length ranging
from 6.5 to 13.5 mm, these Mesozoic beetles are smaller than
extant silphids (usually 12–20 mm long). The beetles are obviously
suggestive of modern Nicrophorinae, the subfamily including the
burying beetles, which locate and bury vertebrate carrion and use
it to feed and care for their brood, sometimes with both mother
and father contributing to the parental investment (3). The beetles
share with Nicrophorinae the presence of a straight epistomal
sulcus, relatively short elytra (Figs. 1 A, D, and E, and 2 A–C),
and body shape (Figs. 1 A–E and 2 A–C and Figs. S1–S3). The
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Mesozoic silphids display three distinct types of antennae: one is
gradually widened from the base to the distal antennomere, re-
sembling that of some extant silphines (Figs. 1F and 2E); the second
is characterized by the apical three antennomeres being moderately
to abruptly clubbed, but not lamellate (Figs. 1G and 2F), a feature
suggestive of the modern nicrophorine genus Ptomascopus; and the
third is characterized by a strongly clubbed antenna with lamellate
apical antennomeres 8–10 (Fig. 3C) as those of the burying beetles
Nicrophorus (Fig. 3D) (3). Given the similar morphological char-
acters between the Mesozoic and Recent silphids, the former
probably had the same feeding habits as modern ones. In most
insects the principal olfactory receptors are located on the anten-
nae, with auxiliary ones on the palpi (12, 13). Two types of sensory
organs (or sensilla) are recognizable on the antennal club of the
Jurassic silphids (Fig. 4C and Fig. S4 D, G, J, and K), perfectly
corresponding to those in extant nicrophorine beetles (14), namely
sensilla coelosphaerica (Fig. 4 D and E and Fig. S4 E, H, L, andM)
and sensilla basiconica (Fig. S4 F and I). The former type is large,
round, pit-like, and located on one side of the apical antennomere
along its axis; the latter is smaller, hair-like, and distributed on the
other side. The identical olfactory structures indicate that silphids in
the Jurassic were already adapted to detecting sulfur-containing
volatile organic compounds over long ranges, just as in extant
nicrophorines and most silphines (15). Mesozoic silphids thus may
have been significant scavengers and important to the breakdown
and recycling of carcasses in such ancient ecosystems.

Notably, all Cretaceous silphids studied possess a pair of stridu-
latory files on abdominal tergite (Figs. 2D and 4B, and Fig. S5 D
and E) and Y-shaped gular sutures (Fig. S3 K and L) like those
found in Nicrophorinae (Fig. 4A and Fig. S5 A–C), so they are
firmly placed in Nicrophorinae. The Cretaceous Nicrophorinae
from China with the second type of antennae can be placed in more
primitive Ptomascopus, whereas those fromMyanmar with the third
type are attributed to Nicrophorus. It is probable that the mid-
Cretaceous and Recent Nicrophorus were derived from among the
Early Cretaceous silphids. Together, the Jurassic and Cretaceous
taxa form a grade leading to crown-group Nicrophorinae and
spanning the origin of stridulatory structures used in parent–
offspring communication (Fig. S6).

Discussion
Evidence of parental care in the fossil record is exceptionally
limited, reported mainly in dinosaurs (16–21), ostracod crusta-
ceans (22), and rarely in insects (23). Despite extensive research
on the ecology, physiology, and behavior of modern burying
beetles, the origin of parental care within Nicrophorinae and
broadly across all beetles remains elusive. Burying beetles exploit
small vertebrate carcasses (usually rodents or birds) and bury
them in soil as a source of nutrition for their larvae (3). The
parents care for and feed the young as they grow, a condition
necessary for sociality and more famously known in taxa such as
bees, ants, and termites (24). The closely allied Ptomascopus are
known to possess a simpler, possibly primitive, parental care in

Fig. 1. Silphids from the Middle Jurassic of Daohugou. (A) 156144a, general habitus. (B) 156145a, part. (C) 156145b, counterpart. (D) 156146a, part.
(E) 156147a, part. (F) Enlargement of A, left antenna. (G) Enlargement of D, left antenna. (Scale bars: 2 mm in A–E; 500 μm in F and G.)
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which adults guard small carcasses and their young against com-
petition from both flies and predators, but without burying the
carcasses (7). Parental care in Silphidae is confined to the sub-
family Nicrophorinae and absent in Silphinae, although the latter
are also carrion-feeding as larvae and adults. The innovation of
stridulatory files in Nicrophorinae for parent–offspring commu-
nication and defense (25) seems to be critically linked to the origin
of parental care, as inhibition of stridulation affects reproduction
drastically in extant Nicrophorus males and affects brood care and
survival of offspring in females (26). Our discovery of exquisitely
preserved Mesozoic silphids sheds new light on the origin and
early evolution of parental care. Although Jurassic silphids re-
semble Ptomascopus, stridulatory files are clearly absent in all
individuals, suggesting that these scavengers did not care for their
young, as in modern Silphinae. However, the Early Cretaceous
nicrophorines having stridulatory files, including Ptomascopus

species, likely shared a similar behavior and biology, possessing
a simple form of parental care whereby adults guarded small
carcasses, alerting their brood to the presence of predators and
defending them as necessary. More significantly, true burying
beetles, Nicrophorus, with characteristic body shape and an-
tennae, originated in the mid-Cretaceous, suggesting that they
likely provided elaborate biparental care to their offspring, in-
cluding exploiting small vertebrate carcasses (early birds or
mammals) and burying them in soil as a source of nutrition for
their larvae. This finding demonstrates that such significant
adaptations, behavioral and morphological, associated with
considerable parental investment, were already well established
in the Cretaceous. Although parental care is widespread across
the hyperdiverse Coleoptera and has evolved independently
multiple times, this is the earliest documentation of such be-
havioral adaptations within the clade.

Fig. 2. Nicrophorine silphids from the Early Cretaceous of northeastern China. (A) 156150a, from Huangbanjigou, general habitus. (B) 156151 from
Huangbanjigou. (C) 156152a from Liutiaogou. (D) Enlargement of abdominal tergite V of C, showing paired stridulatory files. (E) Enlargement of A, left
antenna, mirror-imaged. (F) Enlargement of B, right antenna. (Scale bars: 2 mm in A–C; 200 μm in D; 500 μm in E and F.)

Fig. 3. Mid-Cretaceous and Recent burying beetles Nicrophorus. (A) 156194, dorsal view. (B) 156195, dorsal view. (C) Enlargement of B, left antenna.
(D) Nicrophorus satanas Reitter, dorsal view. (Scale bars: 500 μm in C; 2 mm A, B, and D.)
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Competition for resources and predation have been hypothesized
as ecological factors important to the evolution of parental
care (27, 28). Modern nicrophorines encounter intense biotic
stress from two sources: competition with blow flies (Diptera:
Calliphoridae) for food, and threat of predation, potentially by
some derived staphylinine rove beetles (Coleoptera: Staphylinidae)
(7, 29). Similar competitive pressures may have triggered the
origin of parental care among ancient carrion beetles. Calli-
phorids and other schizophoran flies are unknown before the
Tertiary, and even molecular estimates consider their radiation to
have occurred around the K/T boundary (∼65 Mya) (30, 31).
Calliphorids were certainly not competitors for vertebrate car-
casses during the Mesozoic, and although we cannot exclude the
possibility of other extinct lineages serving such an ecological role,
such evidence is presently not forthcoming. As for potential
predators of silphids, these seem to be in abundance. The related
rove beetles (Staphylinidae) have a relatively long evolutionary
history extending into the early Jurassic (32). Jurassic staphylinids
are well known and diverse, comprising several basal lineages
(32, 33). Many of these taxa, with inconspicuous mandibles, were
possibly mycophagous or saprophagous, like their modern coun-
terparts. However, there was an apparent radiation of the derived
subfamily Staphylininae during the Early Cretaceous (34). In-
terestingly, a diversity of staphylinines has been recovered from the
Yixian Formation and many of them are characterized by very
prominent, sharp mandibles (Fig. S6 B and C) and large bodies
(Fig. S6 A and D–G), as in predaceous groups today. Potential
predators of extant nicrophorine larvae include staphylinine genera
such as the Staphylinina Creophilus, Ontholestes, and Platydracus
(29); several of the Cretaceous rove beetles (Fig. S7) might have
shared this life history, although the known Cretaceous taxa are not
closely related to the often carrion-attracted Staphylinina (34). It is
possible that the rise of predaceous Staphylininae influenced evo-
lution of coeval silphids, perhaps being critical to the origin of
parental investments in stem-group Nicrophorinae. Alternatively,
or in addition, some early mammals or birds in the Early Creta-
ceous might have been predators influencing the evolution of sil-
phid biology (see SI Text, Paleodiversity of Contemporaneous
Feathered or Haired Vertebrates).

With the origin of crown Mammalia in the Late Triassic (35),
early silphids might have already derived from their staphylini-
form ancestors at that time. Mid-Jurassic silphids likely fed on car-
casses of small mammals and perhaps even feathered dinosaurs,
whereas Cretaceous species likely sought, as in modern nicrophorines
(3), small mammals (Fig. S8) or birds. The Daohugou biota
and adjacent localities have yielded feathered dinosaurs (36, 37) and
some terrestrial mammals, including small-sized eutherians and
allotherians (35, 38, 39), but no birds. In contrast, the younger Jehol
biota preserves evidence of significant radiations for both early birds
and mammals, with at least 39 avian and 15 mammalian species
reported (40), and with taxa ranging in body size from dozens of
grams to several kilograms (40, 41). In addition, bird feathers are well
known from Burmese amber (42). Regardless, the Mesozoic diversity
highlights an ancient time of origin for parental investment among
carrion beetles, and emphasizes the complex interplay between lo-
cating a suitable and specialized food source (carrion) and defending
against predation for the evolutionary development of extended
parent–offspring interactions and communication (stridulation). It is
fascinating that much paleoethology and paleoecology are embodied
in the relatively minute remains of otherwise great recyclers during
the mid-Mesozoic forests of China, and suggests a familiar ecological
role and suite of influences in a foreign ecosystem.

Methods
The material studied here is housed at Nanjing Institute of Geology and
Paleontology, Chinese Academy of Sciences. The fossils were prepared using
a sharp knife. Photographswere taken using a Zeiss Discovery V20microscope
system, with specimens moistened with 70% (vol/vol) alcohol (Figs. S1 E and
I–M, S2 A–D, I, L, and M, and S3 K and L) or dry (remaining figures).
Photomicrographs of stridulatory files on abdominal tergite V (Fig. 4 A and B
and Fig. S5 B–F) and antennal sensilla (Fig. 4 C and D and Fig. S4) were taken
with a LEO1530VP field-emission scanning electron microscope.
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Description of Mesozoic Silphidae and Remarks. Silphidae from the
Middle Jurassic Daohugou biota. With a body length ranging from
6.5 to 13.5 mm, these beetles (Figs. S1 and S2) are smaller than
Recent silphids (length 7–45 mm, usually 12–20 mm). The general
habitus is obviously suggestive of the extant subfamily Nicrophor-
inae. The robust body (Fig. S1 A–C and Fig. S2 A–K), including the
head, bears fine and dense pubescence, whereas the prominent
mandible is sharp and lacks preapical teeth. The antennae are of
two distinct types: one type is gradually widened from the base to
the distal antennomere, resembling that of some extant silphines
(Fig. S1 L and M); the other is characterized by the apical three
antennomeres being more abruptly clubbed (Fig. S2 L and M),
a feature greatly resembling modern Nicrophorinae, especially the
relatively primitive genus Ptomascopus. The second antennomere
is distinct, slightly shorter than the third, not highly reduced as in
modern Nicrophorinae (Figs. S1 L and M, and S2 L and M). At
least the apical four antennomeres are asymmetrical and the an-
tennal insertions are exposed (Figs. S1 L andM, and S2 L andM).
The epistomal sulcus is present and straight (Fig. S1C), as found in
modern Nicrophorinae, and the elytra are short and truncate,
usually with four abdominal segments exposed (Fig. S2G, J, and K).
It is noteworthy that these superficially nicrophorine-like bee-
tles retain several peculiar characters that differ from those of
Nicrophorinae. The beetles bear narrowly separated gular sutures
(Fig. S1D) that diverge anteriorly and posteriorly (in contrast to
posteriorly fused and Y-shaped in Nicrophorinae), narrowly sep-
arated mesocoxae (Fig. S2 B, C, F, and I), a medially carinate
sternite III (Fig. S1G) and tergite V lacking stridulatory files.
Silphidae from the Early Cretaceous Jehol biota.These beetles (Fig. S3),
12.5–14.0 mm long, are superficially similar to those from the
Middle Jurassic Daohugou biota, including their general habitus,
body size, and antennal morphology. Like the Jurassic silphids, the
Cretaceous ones have two antennal types: one is gradually dilated
apically, almost the same as one of the Jurassic types (Fig. S3 H
and I); the other is characterized by an elongate scape and four
evidently dilated apical antennomeres (Fig. S3J). The beetles also
share a straight epistomal sulcus (Fig. S3 C and K), truncate elytra
(Fig. S3 A–G), and a carinate sternite III (as in Fig. S2 A, D, and
F). Unlike the Jurassic silphids, they possess Y-shaped, posteriorly
fused gular sutures (Fig. S3 K and L), moderately separated
mesocoxae (Fig. S3 A, D, and F) and, more significantly, ab-
dominal tergite V with paired stridulatory files (Fig. S5 D–F).
Remarks.The Jurassic silphids distinctly combine features of the two
subfamilies, as presently defined. These beetles share with Silphinae
their antennal morphology (pedicel well-developed, rather than
retracted into apex of scape) and absence of paired stridulatory files,
both interpreted as primitive conditions, and with Nicrophorinae
the presence of a straight epistomal sulcus, short elytra, and overall
body shape. The Cretaceous forms appear nearly identical to those
of the Jurassic, sharing body shape, antennal morphology, and
truncate elytra, but differ most profoundly in the presence of paired
stridulatory files and posteriorly fused gular sutures. Thus, the
Cretaceous silphids can be assigned to the modern subfamily
Nicrophorinae, closely resembling the modern genus Ptomascopus.
Compared with the extant burying beetles, Nicrophorus, the Cre-
taceous taxa exhibit a simpler antennal morphology. Nicrophorus
typically has a strongly clubbed antenna with lamellate anten-
nomeres 8–10, but the Cretaceous taxa bear more silphine-like
antennae, with apical antennomeres dilated but not lamellate.

Fossil Record of Social or Subsocial Insects. The origin and early
evolution of insect societies is a fascinating and challenging issue in
fossil insect studies. The evolution of eusociality occurred multiple
times in different orders of insects, including termites (Blattodea:
Termitoidae), ambrosia beetles (Coleoptera: Scolytidae), gall-
dwelling aphids (Hemiptera), Australian gall-dwelling thrips
(Thysanoptera), andmanyHymenoptera (i.e., bees, wasps, and ants)
(1). It has been suggested that eusociality first evolved in the
common ancestor of all termites in the Early Cretaceous and in the
ancestor of all ants in the mid-Cretaceous, perhaps 115–120 Mya,
and there is no fossil evidence that social insects existed before then.
Termites. The oldest definitive termite, Baissatermes lapideus Engel,
Grimaldi, and Krishna, 2007, is known from a single alate com-
pression fossil from the Zaza Formation of Baissa, Russian Trans-
baikalia (2). The exact age of the Zaza Formation is disputed,
usually estimated as Early Cretaceous (Neocomian–Aptian), but
most paleoentomologists date it as Valanginian–Hauterivian (3). It
is the earliest fossil termite known to date and the oldest known
example of a social organism. In addition, termite borings are known
from the Cretaceous and Tertiary, which also reflects their early
history. The earliest termite workings, attributed to Kalotermitidae,
are from the Late Cretaceous Javelina Formation of western Texas,
United States (4), and represent the oldest social insect nest. (5)
Bees. The oldest fossil bee, Cretotrigona prisca Engel, 2000, is from
the Late Cretaceous (approximately 65 Mya) amber of New Jersey.
C. prisca is a social bee, attesting to the antiquity of sociality in the
corbiculate apines. Eusocial corbiculate bees evolved in the Late
Cretaceous, and they appear to have reached their peak in their
distribution and diversity in the Eocene (5).
Ants.The earliest known ant,Gerontoformica cretacicaNel, 2004, is
based on a putative worker specimen from the Uppermost Albian
amber of France (6). Another slightly younger definitive ant is
known from the earliest Cenomanian Burmese amber (5). Origin
of the ants was thus no later than latest Early Cretaceous and
during the rise of angiosperms, but ants did not radiate extensively
until the Tertiary. In addition, the worker-like structure of some
sphecomyrmine ants from the Cretaceous indicates that the most
primitive known ants were social (7).
Wasps. Vespids from the Mesozoic are rare and belong to the
solitary or subsocial subfamilies; nevertheless, a polistine nest has
been found from the Late Cretaceous of Utah (8–9), indicating that
social forms were already present at that time. Thus, eusociality
also seems to be ancient in vespids, and probably evolved in these
wasps around the time it did in ants.
To date, no definitive ambrosia beetles are known from the

Mesozoic, despite the fact that a number of ambrosia beetles are
known from Early Miocene Dominican amber (10), Eocene Baltic
amber (11), Late Eocene Rovno amber of Ukraine (12), and Late
Eocene Florissant beds, Colorado, United States (13). The earliest
fossil thrips, Permothrips longipennis Martynov, 1935, can be traced
back to the Permian (14). Even though true thrips became much
more abundant by the Early Cretaceous, only one example in-
dicating subsociality (food-provisioning for larvae) has been re-
ported from the Early Cretaceous amber of Spain (15). Similarly,
the oldest aphid, Vosegus triassicus Szwedo and Nel, 2011, has been
described recently from the Anisian (early Middle Triassic) of
Vosges, northeastern France (16), but there is no fossil evidence
suggesting that social aphids originated during the Mesozoic.

Paleodiversity of Contemporaneous Feathered or Haired Vertebrates.
Because the extant Nicrophorus (burying beetles) and the more
basal group Ptomascopus usually exploit small vertebrate carcasses
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(rodents or birds) as a food source for their larvae, the contem-
poraneous feathered or haired vertebrates from the same stratum
were probably the source of nutrition for the larvae of early sil-
phids. In particular, the Middle Jurassic Daohugou biota and
adjacent localities have yielded four feathered dinosaurs, such as
Anchiornis huxleyi Xu et al., 2009 from the Middle Jurassic
Tiaojishan Formation of Liaoning province (17); Epidexipteryx hui
Zhang et al., 2008 from Daohugou (18); Pedopenna daohugouensis
Xu and Zhang, 2005 from Daohugou (19); and Xiaotingia zhengi
Xu et al., 2011 from the Tiaojishan Formation at Linglongta,
Jianchang, Liaoning province (20). Specifically, with a body length
about 11.6-cm long, the smallest feathered dinosaur of them,
Xiaotingia zhengi, is small-sized and about the weight of a domestic
chick (20). In addition, four small-sized mammals are known from
Daohugou and an adjacent locality, including Castorocauda
lutrasimilis Ji et al., 2006 (body length: ∼20 cm without tail) (21),
Pseudotribos robustus Luo et al., 2007 (body length: ∼8 cm without
tail) (22), and Volaticotherium antiquus Meng et al., 2006 (body
length: 12–14 cm) from Daohugou (23); additionally is Juramaia
sinensis Luo et al., 2011 (body mass: about 15 g) from the Middle
Jurassic at Tiaojishan Formation at Daxigou, Jianchang County of
Liaoning province, China (24).
More discoveries have been made from the Early Cretaceous

Yixian Formation and contemporaneous localities. At least 11
feathered dinosaurs are reported from Yixian Formation and
contemporaneous localities, including Beipiaosaurus inexpectus
Xu et al., 1999 (25); Caudipteryx zoui Ji et al., 1998 (26); Dilong
paradoxus Xu et al., 2004 (27); Jinfengopteryx elegans Ji et al.,
2005 (Qiaotou member of the Huajiying Formation of Hebei
Province) (28); Protarchaeopteryx robusta Ji and Ji, 1997 (29);
Similicaudipteryx yixianensis He et al., 2008 (30); Sinocalliopteryx
gigas Ji et al., 2007 (31); Mei long Xu and Norell, 2004 (32);
Sinornithosaurus millenii Xu et al., 1999 (33); Sinosauropteryx
prima Ji and Ji, 1996 (34); and Yixianosaurus longimanus Xu and
Wang, 2003 (35). With body length more than 50 cm, all of these
Cretaceous feathered dinosaurs had relatively large body sizes.

With at least eight mammal species discovered from the Yixian
Formation to present, the early mammals have received extensive
attention. Excavations in the Yixian Formation led to the discovery
of two large mammals, Repenomamus robustus Li et al., 2000
(approximately 4–6 kg) (36) and Repenomamus giganticus Hu
et al., 2005 (approximately 12–14 kg) (37), the largest mammals
known to date from the Cretaceous. In particular, the discovery of
a small dinosaur preserved in the stomach area of R. robustus
provided the first direct evidence that mammals preyed on dino-
saurs (37). The other mammals from the formation, Akidolestes
cifellii Li and Luo, 2006 (38); Eomaia scansoria Ji et al., 2002 (39);
Sinobaatar lingyuanensis Hu and Wang, 2002 (40); Sinodelphys
szalayi Luo et al., 2003 (41); Jeholodens jenkinsi Ji et al., 1999 (42);
and Zhangheotherium quinquecuspidensHu et al., 1997 (43) are all
small, with body length less than 15 cm. Interestingly, the little
primitive mammal J. jenkinsi has a very small body size (body
length approximately 5 cm, excluding the long tail) and its tooth
structure suggest that it was an insectivore.
Even though no definitive birds have been discovered in the

Middle Jurassic Daohugou, the birds from the younger Early
Cretaceous Yixian Formation (and contemporaneous areas) are
diverse. So far, at least eight primitive birds have been reported
from the Yixian Formation: Archaeorhynchus spathula Zhou and
Zhang, 2006 (44); Changchengornis hengdaoziensis Ji et al., 1999
(45); Confuciusornis sanctusHou et al., 1995 (46); Hongshanornis
longicresta Zhou and Zhang, 2005 (47); Liaoxiornis delicatus Hou
and Chen, 1999 (48); Longirostravis hani Hou et al., 2004 (49);
Jeholornis prima Zhou and Zhang, 2002 (50); and Shenqiornis
mengi Wang et al., 2010 (Qiaotou member of the Huajiying
Formation, correlating with the Yixian Formation) (51). Among
these, C. sanctus, with long wing and tail feathers, was about the
size of a modern crow, with a wingspan of up to 0.7 m and
a weight of up to 0.5 kg. In contrast, at only about 8-cm long, the
sparrow-sized L. delicatus is the smallest bird known from the
Mesozoic deposit (48).
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Fig. S1. Silphids from the Middle Jurassic of Daohugou, Ningcheng County, Inner Mongolia of China, characterized by antennae gradually widened from the
base to the distal antennomere. (A) General habitus, mainly showing dorsal structures, 156148a. (B) 156148b, with a few ventral structures shown. (C) 157736,
mainly showing dorsal structures. (D) Detail of 156145b, showing gradually widened antennae, narrowly separated gular sutures, and setose five-segmented
protarsi. (E) Enlargement of B, showing gradually widened antenna and normal antennomere 2. (F) Hind wing and partial pubescent elytron, 156149. (G)
Detail of 156145b, showing contiguous metacoxae and a small median carina on abdominal sternite III. (H) Intersegmental membrane between abdominal
sternites VI and VII, showing brick-wall pattern. (I) Detail of 156145b, showing robust spur, five-segmented protarsus, and pretarsal claws. (J) Detail of 156145b,
showing truncate apex of tibia and five-segmented mesotarsus. (K) Detail of 156145b, showing long spur, truncate apex of tibia, five-segmented metatarsus,
and claws. (L) Detail of 156144, showing right antenna. (M) Detail of 157736, showing left antenna. (Scale bars: 5 mm in A and B; 2 mm in C, D, and F; 1 mm in
G; 500 μm in E, H–M.)
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Fig. S2. Silphids from Daohugou; characterized by the apical three antennomeres being moderately to abruptly clubbed. (A) General habitus, mainly showing
dorsal structures, 156147a. (B) 156147b, with mainly ventral structures shown. (C) 156146b, mainly showing ventral structure. (D) 156146a, mainly showing
dorsal structures. (E) 157737a, mainly showing dorsal structure. (F) 157737b, mainly showing ventral structure. (G) 157738a, mainly showing dorsal structure.
(H) 157738b, mainly showing ventral structure. (I) 157739, mainly showing ventral structure. (J) 156218, mainly showing dorsal structures. (K) 153700, mainly
showing dorsal structures. (L) Enlargement of C, showing right antenna. (M) Enlargement of right antenna. (Scale bars: 5 mm in G and H; 2 mm in A–F, I–K;
500 μm in L and M.)
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Fig. S3. Silphids from the Early Cretaceous of northeastern China. (A) 156152b, from Liutiaogou, Ningcheng County, Inner Mongolia, general habitus, mainly
showing ventral structures. (B) 156152a, general habitus. (C) 156150a, from Huangbanjigou, Beipiao City, Liaoning Province, showing dorsal structures.
(D) 156150b, showing ventral structures. (E) 156151, from Huangbanjigou, showing ventral structures. (F) 156153, from Huangbanjigou, showing ventral
structures. (G) 156154, from Huangbanjigou, showing dorsal structures. (H) Enlargement of D, showing gradually widened left antenna. (I) Enlargement of
C, showing right antenna. (J) Enlargement of E, left antenna, showing distinctly dilated apical four antennomeres. (K) Detail of 156150a, showing mandibles,
exposed antennal insertions, straight epistomal sulcus, and Y-shaped gular sutures. (L) Enlargement of F, showing large compound eyes, mandibles, and
Y-shaped gular sutures. (M) Detail of 156152a, showing robust spur, five-segmented protarsus. (N) Detail of 156152a, showing spur, truncate apex of tibia, five-
segmented mesotarsus, and pretarsal claws. (O) Detail of 156152a, showing truncate apex of tibia, five-segmented metatarsus. (Scale bars: 2 mm in A–G;
500 μm in H–O.)
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Fig. S4. Comparison of antennae and olfactory receptors between Jurassic and Recent silphids, scanning electron micrographs. (A) Enlargement of apical four
antennomeres of a modern burying beetle (Nicrophorus orbicollis Say), showing densely setose apical three antennomeres, where olfactory receptors are
located. (B) Enlargement of A, showing the pit-like sensilla coelosphaerica (coel). (C) Enlargement of A, showing the hair-like sensilla basiconica (bas). (D) Apical
three antennomeres of Jurassic silphid, showing left antenna, 156144. (E) Enlargement of D, showing the pit-like coel. (F) Enlargement of D, showing hair-like
bas, with only basal parts preserved. (G) Apical two antennomeres of Jurassic silphid, 156148b. (H) Enlargement of J, showing coel. (I) Enlargement of
J, showing bas. (J) Enlargement of D, showing two different sensilla, coel and bas, located on each side of the apical antennomere along its axis. (K) En-
largement of G, showing coel and bas. (L) Enlargement of H, showing detail of coel. (M) Enlargement of E, showing detail of coel. (Scale bars: 200 μm in A, D,
and G; 100 μm in J and K; 10 μm in B, C, E, F, H, and I; 5 μm in L and M.)
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Fig. S5. Comparison of stridulatory files between Cretaceous and Recent nicrophorine silphids. (A) Stridulatory files in a modern burying beetle (N. orbicollis
Say, 1825), under light microscope. (B) Stridulatory files of N. orbicollis, scanning electron micrograph. (C) Enlargement of B, showing details of stridulatory
files. (D) Stridulatory files in a Cretaceous nicrophorine silphid, 156152a. (E) Stridulatory files in another Cretaceous nicrophorine silphid, 156154. (F) En-
largement of D, showing details of stridulatory files of a Cretaceous nicrophorine. (Scale bars: 500 μm in A, B, D, and E; 50 μm in C and F.)
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Fig. S6. Phylogeny of Silphidae. Clade 1 is characterized by presence of epistomal sulcus, rounded pronotum with straight anterior margin, and truncate
elytra. Clade 2, representing Nicrophorinae, is characterized by paired stridulatory files on tergite V and Y-shaped gular sutures. Clade 3, Nicrophorinae, is
characterized by the greatly reduced second antennomere. The intriguing Jurassic silphids, sharing several features of modern nicrophorines and silphines,
represent an offshoot of transitional forms between the two subfamilies.

Fig. S7. Diverse staphylinine rove beetles, potential predators of early nicrophorines from the Early Cretaceous Jehol biota of China. (A) Thayeralinus sp.,
156155a, characterized by large body size, large head, prominent mandibles, transverse pronotum, and long abdomen. (B) Enlargement of A, showing
prominent mandibles with two or three sharp preapical teeth. (C) Enlargement of D, showing prominent mandible with very sharp apex. (D) Megolisthaerus
minor Cai and Huang, 153697a, characterized by moderate body size, prominent toothed mandibles and abdomen with a pair of basolateral ridges on tergites
III to VI. (E) Thayeralinus sp., 156156a, showing large head and well-developed hind wings. (F) Thayeralinus sp., 156157. (G) Thayeralinus sp., 157735, showing
slightly posteriorly-narrowed head, large mandibles and robust body. (Scale bars: 5 mm in A, E–G; 2 mm in D; 500 μm in B and C.)
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Fig. S8. Ecological reconstruction of early silphids from the Early Cretaceous of northeastern China. A pair of early nicrophorines, feeding on the carcass of an
early mammal, are guarding their larvae from potential predators or food competitors.
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